.
Значение интеграла будет
.
Полученные коэффициенты подставляются в систему уравнений (4.26):
Решая эту систему, определяются
.
Затем находится значение первой производной в начальной точке путем подстановки в уравнение (4.23) вычисленных коэффициентов и .
Тогда
.
Для базисное уравнение имеет вид
или
.
Таким образом, получены все параметры. Подставив в уравнение функции с гибкой структурой значение первой производной и значение , можно получить
.
Подстановкой вместо его перспективного значения на определенный год определяется ожидаемая величина коэффициента выпуска. Необходимо отметить, что основной задачей при использовании ФГС для прогноза является определение корней базисного уравнения
, значения которых зависят от коэффициентов
. Последние должны определяться из принципа оптимальной аппроксимации, заключающегося в минимизации остатка
и установлении таких значений коэффициентов
, для которых значение остатка в каждой точке таблицы исходных данных не превышает некоторой заданной величины (ошибки аппроксимации). При машинной реализации метода, базирующегося на применении ФГС, необходимо принимать допущение о дифференцируемости функции
раз, с учетом которого можно записать, что
; (4.27)
, (4.28)
где – значение производной функции
порядка в точке
;
– выражение, получаемое из определителя
(4.29)
заменой последней строки определителя на функции вида ,
;
. (4.30)
Значения коэффициентов определяются в результате решения уравнения (4.30) путем приравнивания его к нулю. В связи с тем, что производные
неизвестны, переходят к системе линейных алгебраических уравнений [1], [2] вида
Актуально о образовании:
Суть и содержание метапредметных результатов
Метапредметные умения, или как их еще называют универсальные учебные действия делятся на несколько видов, это личностные, коммуникативные, познавательные, регулятивные. Личностные универсальные учебные действия обеспечивают ценностно-смысловую ориентацию учащихся (умение соотносить поступки и событ ...
Просветительские реформы Петра I
XVIIIвек для России – век кардинальных преобразований, подготовленным всем предшествующим ходом исторического развития – это период развития русской культуры, означавший постепенный переход от древнерусской культуры к культуре Нового времени (русской классической культуре XIXв.), начало которому по ...
Методологические
основания и особенности трактовки детской природы в системе М. Монтессори
Значение среды в воспитании. Метод наблюдения, без сомнения, должен включать в себя и методическое наблюдение морфологического развития детей. Хотя этот элемент входит необходимой частью в состав метода, сам метод основан не на этом частном виде наблюдения. Метод наблюдения покоится на одном главно ...