.
Аналогичная процедура повторяется до тех пор, пока величина критерия фильтрации уменьшается или увеличивается в зависимости от его содержания (при этом исходная информация делится на две выборки: обучающую и проверочную). Для практических расчетов в качестве такого критерия рекомендуется принимать среднеквадратическую ошибку аппроксимации модели на проверочной выборке, которая, как установлено в работе, при увеличении числа уровней фильтрации, а, следовательно, сложности модели, достигает экстремального значения. Сложность модели (измеряется числом ее членов), соответствующая экстремальному значению критерия, является оптимальной. На последнем уровне фильтрации фиксируется «частное описание», значение которого минимально. На предпоследнем уровне выбираются «частные описания», являющиеся аргументами последнего уровня, и т.д. Так как «частные описания» являются функцией двух аргументов, их коэффициенты легко определяются по небольшому количеству исходных данных. Исключая промежуточные переменные можно получить модель исследуемых характеристик объекта прогнозирования в виде аналога «полного описания»
,
где в общем случае .
Как известно, особые трудности при увеличении числа членов в разложении Тейлора связаны с получением аналитических зависимостей для определения вектора коэффициентов . Из работы следует, что
,
где – вектор-столбец размером
сглаженных значений процесса
;
– вектор-столбец размером
неизвестных коэффициентов
;
– матрица размером
, элементы которой, соответствующие
-й строке и
-му столбцу, вычисляются по зависимости
. (4.13)
В связи с тем, что сглаженные значения процесса могут быть определены по зависимости
вектор выражается зависимостью
. (4.14)
Анализ зависимости (4.13) показывает, что наибольшую сложность вызывает вычисление суммы бесконечного ряда, представляющего собой произведение степеней показательной функции и отношения факториалов, которое можно упростить путем несложных преобразований:
, (4.15)
где ;
Рис. 4.4 Блок-схема алгоритма прогнозирования по методу модифицированного экспоненциального сглаживания
Актуально о образовании:
Психолого–педагогическая характеристика младших школьников с общим
недоразвитием речи
В соответствии с принципами психолого-педагогической классификации речевых нарушений в логопедии выделяют категорию детей с таким нарушением, как общее недоразвитие речи (ОНР), при котором отмечается недостаточная сформированность всех языковых структур. В настоящее время под общим недоразвитием ре ...
Информационное пространство и изучение истории в школе
В последние десятилетия в курсе истории, изучаемом в российской школе, произошли значительные изменения. Наиболее очевидные из них связаны с содержанием понятийного, фактического, оценочного материала. По мере отказа от господствовавших прежде в отечественной науке моноконцептуальности, системы жес ...
Методы воспитательной работы с младшими школьниками в условиях
дополнительного образования
педагогический школьник внеклассный образование Содержание и многообразие форм учебно-воспитательного процесса в их единстве позволяет заинтересовать и вовлечь детей в систему дополнительного образования. Разнообразие форм даёт возможность увеличить число воспитывающих факторов, влияющих на сознани ...