.
Аналогичная процедура повторяется до тех пор, пока величина критерия фильтрации уменьшается или увеличивается в зависимости от его содержания (при этом исходная информация делится на две выборки: обучающую и проверочную). Для практических расчетов в качестве такого критерия рекомендуется принимать среднеквадратическую ошибку аппроксимации модели на проверочной выборке, которая, как установлено в работе, при увеличении числа уровней фильтрации, а, следовательно, сложности модели, достигает экстремального значения. Сложность модели (измеряется числом ее членов), соответствующая экстремальному значению критерия, является оптимальной. На последнем уровне фильтрации фиксируется «частное описание», значение которого минимально. На предпоследнем уровне выбираются «частные описания», являющиеся аргументами последнего уровня, и т.д. Так как «частные описания» являются функцией двух аргументов, их коэффициенты легко определяются по небольшому количеству исходных данных. Исключая промежуточные переменные можно получить модель исследуемых характеристик объекта прогнозирования в виде аналога «полного описания»
,
где в общем случае .
Как известно, особые трудности при увеличении числа членов в разложении Тейлора связаны с получением аналитических зависимостей для определения вектора коэффициентов . Из работы следует, что
,
где – вектор-столбец размером
сглаженных значений процесса
;
– вектор-столбец размером
неизвестных коэффициентов
;
– матрица размером
, элементы которой, соответствующие
-й строке и
-му столбцу, вычисляются по зависимости
. (4.13)
В связи с тем, что сглаженные значения процесса могут быть определены по зависимости
вектор выражается зависимостью
. (4.14)
Анализ зависимости (4.13) показывает, что наибольшую сложность вызывает вычисление суммы бесконечного ряда, представляющего собой произведение степеней показательной функции и отношения факториалов, которое можно упростить путем несложных преобразований:
, (4.15)
где ;
Рис. 4.4 Блок-схема алгоритма прогнозирования по методу модифицированного экспоненциального сглаживания
Актуально о образовании:
Понятие метапредметности в современном образовании
Образование – это главный ресурс развития общества. Выдвинутая на мировом уровне стратегия – “образование на протяжении всей жизни человека”. Самоопределение и саморазвитие человека осмысляются как самые эффективные жизненные стратегии. Умение учиться становится одним из главных условий успешного ж ...
Задачи на совместную работу
При решении этих задач нужно выяснить с учащимися, что возможны два случая: объем выполненной работы известен; объем выполненной работы неизвестен. Первые задачи удобно решать, используя таблицы. Пример. Два токаря вместе изготовили 350 деталей. Первый токарь делал в день 40 деталей и работал 5 дне ...
Применение мультимедийных ресурсов по физике в практике
Главным этапом классификации мультимедийных ресурсов является определение их по функциональному назначению. На схеме представлена классификация мультимедийных ресурсов по физике. Схема 1 - Классификация мультимедийных ресурсов Возможности каждого вида мультимедийных ресурсов и применение их при обу ...