Модифицированный имитационным моделированием метод экспоненциального сглаживания

Новое о образовании » Образовательный стандарт дисциплины "Системное моделирование" » Модифицированный имитационным моделированием метод экспоненциального сглаживания

Страница 2

.

Аналогичная процедура повторяется до тех пор, пока величина критерия фильтрации уменьшается или увеличивается в зависимости от его содержания (при этом исходная информация делится на две выборки: обучающую и проверочную). Для практических расчетов в качестве такого критерия рекомендуется принимать среднеквадратическую ошибку аппроксимации модели на проверочной выборке, которая, как установлено в работе, при увеличении числа уровней фильтрации, а, следовательно, сложности модели, достигает экстремального значения. Сложность модели (измеряется числом ее членов), соответствующая экстремальному значению критерия, является оптимальной. На последнем уровне фильтрации фиксируется «частное описание», значение которого минимально. На предпоследнем уровне выбираются «частные описания», являющиеся аргументами последнего уровня, и т.д. Так как «частные описания» являются функцией двух аргументов, их коэффициенты легко определяются по небольшому количеству исходных данных. Исключая промежуточные переменные можно получить модель исследуемых характеристик объекта прогнозирования в виде аналога «полного описания»

,

где в общем случае .

Как известно, особые трудности при увеличении числа членов в разложении Тейлора связаны с получением аналитических зависимостей для определения вектора коэффициентов . Из работы следует, что

,

где – вектор-столбец размером сглаженных значений процесса

;

– вектор-столбец размером неизвестных коэффициентов

;

– матрица размером , элементы которой, соответствующие -й строке и -му столбцу, вычисляются по зависимости

. (4.13)

В связи с тем, что сглаженные значения процесса могут быть определены по зависимости

вектор выражается зависимостью . (4.14)

Анализ зависимости (4.13) показывает, что наибольшую сложность вызывает вычисление суммы бесконечного ряда, представляющего собой произведение степеней показательной функции и отношения факториалов, которое можно упростить путем несложных преобразований:

, (4.15)

где ;

Рис. 4.4 Блок-схема алгоритма прогнозирования по методу модифицированного экспоненциального сглаживания

Страницы: 1 2 3 4 5 6 7


Актуально о образовании:

Межпредметные связи в процессе изучения химии
Отражение межпредметных связей и определение содержания в программах: а) для обычных классов без специализации – программа курса химии для 8-11 классов средней общеобразовательной школы – разработана в лаборатории химического образования Института общеобразовательной школы РАО – Москва “Просвещение ...

Подходы к музыкальному развитию в отечественной психологии
Постановка этой проблемы в отечественной педагогике и психологии принципиально отлична. Как по своей социальной целенаправленности, так и по диалектико-материалистическому пониманию процессов развития личности ребенка. В процессе приобретения ребенком социального музыкального опыта выявляются и раз ...

Начало образования на Руси
На Руси учебные заведения именовались училищами: слово школа вошло в обиход начиная с XIV века. Уже в первой половине XI века нам известны дворцовая школа князя Владимира в Киеве и школа, основанная Ярославом Мудрым в Новгороде в 1030 году. Содержание образования, как и в учебных заведениях Запада, ...

Категории

Copyright © 2025 - All Rights Reserved - www.centraleducation.ru