Применение аналитических и статистических моделей связано с априорным поиском структуры этих моделей чаще всего при ограниченной информации о характере развития процесса. Определение параметров статистической модели и оценка точности прогноза требуют к тому же наличия необходимых статистических данных, характеризующих поведение объекта на периоде основания прогноза. Указанные обстоятельства в первую очередь снижают достоверность выводов в задачах прогнозирования развития технических систем.
Для выполнения прогноза предлагается подход, не связанный с использованием жесткой структуры модели и серьезными требованиями к объему априорной информации. Сущность метода заключается в представлении используемого для прогнозирования динамического ряда в качестве определенным образом ориентированного процесса случайного блуждания.
Значение изменяющегося параметра объекта прогнозирования для каждого момента на периоде основания можно представить в виде
,
где
– значение динамического ряда в
-й момент времени (год) периода основания;
– значение динамического ряда в предыдущий момент времени;
– приращение переменной объекта прогнозирования в
-й момент времени по сравнению с предыдущими;
– число значений динамического ряда.
Поскольку приращения носят случайный характер, для них можно определить вид закона распределения и его параметры. При этом нужно учесть характер зависимости последующих приращений от предыдущих.
Предполагается, что в период упреждения характер изменения динамического ряда сохраняется. Тогда, используя характеристики приращений, метод статистических испытаний можно применить для моделирования приращений в период упреждения прогноза. Значение единичной реализации прогноза на каждом последующем шаге прогнозирования будет
,
где
– номер шага на периоде упреждения;
– число шагов на периоде упреждения;
– значение переменной объекта прогнозирования на предыдущем шаге;
– моделируемое значение приращения на
-м шаге.
Производя данную процедуру до момента прогнозирования, получим значение точечного прогноза
,
где
– точечный прогноз на
-й период упреждения;
– конечное значение динамического ряда.
При разыгрывании данной процедуры многократно образуется совокупность случайных значений точечного прогноза. По полученной выборке значений
определяются среднее значение прогноза и его дисперсия:
; (4.1)
, (4.2)
где
– число реализаций точечного прогноза;
– разыгрываемое значение приращения на
-м шаге периода упреждения в
-й реализации точечного прогноза;
– значение
-й реализации точечного прогноза, определяемое по зависимости (1).
Рис. 4.1 Графическое отображение процесса случайного блуждания
Таким образом, процедура прогнозирования сводится к многократной имитации приращений на периоде упреждения и последующему определению статистических характеристик (среднего и дисперсии) реализаций точечного прогноза. График предлагаемого метода показан на рис. 4.1.
Актуально о образовании:
Понятие «педагогическая поддержка» в психолого-педагогической литературе
Термин «педагогическая поддержка» является относительно новым. Под ним понимается система совместной деятельности педагога и ученика, направленная на сохранение самости последнего и ставящая целью поддержать его в процессах «само». В «Толковом словаре» С.И. Ожегова читаем: «Поддержка – помощь, соде ...
Познавательная деятельность, ее структура
СХЕМА 1. ПОТРЕБНОСТИ Познавательная МОТИВЫ деятельность ЦЕЛЬ Совершенствование процесса обучения невозможно без организации полноценной познавательной деятельности – одной из основных форм деятельности школьника. Полноценная познавательная деятельность влияет на формирование личности ученика, спосо ...
Концептуальные основы развития самостоятельной работы студентов
За последние несколько лет как результат пробуждения творческой инициативы, демократизации и определения права на существование альтернативных позиций и взглядов начали интенсивно разрабатываться новые концепции обучения студентов. В этих концентрациях все чаще обращаются к студенту как субъекту уч ...