Применение аналитических и статистических моделей связано с априорным поиском структуры этих моделей чаще всего при ограниченной информации о характере развития процесса. Определение параметров статистической модели и оценка точности прогноза требуют к тому же наличия необходимых статистических данных, характеризующих поведение объекта на периоде основания прогноза. Указанные обстоятельства в первую очередь снижают достоверность выводов в задачах прогнозирования развития технических систем. ремонт подвески ходовой части в екатеринбурге цены
Для выполнения прогноза предлагается подход, не связанный с использованием жесткой структуры модели и серьезными требованиями к объему априорной информации. Сущность метода заключается в представлении используемого для прогнозирования динамического ряда в качестве определенным образом ориентированного процесса случайного блуждания.
Значение изменяющегося параметра объекта прогнозирования для каждого момента на периоде основания можно представить в виде
,
где – значение динамического ряда в
-й момент времени (год) периода основания;
– значение динамического ряда в предыдущий момент времени;
– приращение переменной объекта прогнозирования в
-й момент времени по сравнению с предыдущими;
– число значений динамического ряда.
Поскольку приращения носят случайный характер, для них можно определить вид закона распределения и его параметры. При этом нужно учесть характер зависимости последующих приращений от предыдущих.
Предполагается, что в период упреждения характер изменения динамического ряда сохраняется. Тогда, используя характеристики приращений, метод статистических испытаний можно применить для моделирования приращений в период упреждения прогноза. Значение единичной реализации прогноза на каждом последующем шаге прогнозирования будет
,
где – номер шага на периоде упреждения;
– число шагов на периоде упреждения;
– значение переменной объекта прогнозирования на предыдущем шаге;
– моделируемое значение приращения на
-м шаге.
Производя данную процедуру до момента прогнозирования, получим значение точечного прогноза
,
где – точечный прогноз на
-й период упреждения;
– конечное значение динамического ряда.
При разыгрывании данной процедуры многократно образуется совокупность случайных значений точечного прогноза. По полученной выборке значений определяются среднее значение прогноза и его дисперсия:
; (4.1)
, (4.2)
где – число реализаций точечного прогноза;
– разыгрываемое значение приращения на
-м шаге периода упреждения в
-й реализации точечного прогноза;
– значение
-й реализации точечного прогноза, определяемое по зависимости (1).
Рис. 4.1 Графическое отображение процесса случайного блуждания
Таким образом, процедура прогнозирования сводится к многократной имитации приращений на периоде упреждения и последующему определению статистических характеристик (среднего и дисперсии) реализаций точечного прогноза. График предлагаемого метода показан на рис. 4.1.
Актуально о образовании:
Роль ДЮСШ в развитии физической культуры района
В настоящее время разработана концепция областной программы «Здоровье - XXI век». Программа рассчитана до 2005 года. В ней отражено то, что главная задача здорового образа жизни — не столько правильное питание, полноценный отдых, спорт и борьба со стрессами, сколько убеждение каждого человека, преж ...
Проблемное изложение материала
Проблемное изложение материала отличается от информативного метода изложения тем, что учитель излагает научные проблемы и открытия не в их завершенном виде, а раскрывает процесс решения проблемы, историю открытия, в некотором смысле сокращенно воспроизводит путь к доказательному познанию и открытию ...
Характеристика стертой дизартрии в трудах различных исследователей
Е.Н. Винарская характеризует дизартрию как «…невнятную, смазанную, малоразборчивую речь, обусловленную стволово – подкорковыми очаговыми поражениями мозга». Дизартрия - латинский термин, который в переводе означает расстройство членораздельной речи-произношения. А. Н. Корнев определяет дизартрию у ...