Применение аналитических и статистических моделей связано с априорным поиском структуры этих моделей чаще всего при ограниченной информации о характере развития процесса. Определение параметров статистической модели и оценка точности прогноза требуют к тому же наличия необходимых статистических данных, характеризующих поведение объекта на периоде основания прогноза. Указанные обстоятельства в первую очередь снижают достоверность выводов в задачах прогнозирования развития технических систем.
Для выполнения прогноза предлагается подход, не связанный с использованием жесткой структуры модели и серьезными требованиями к объему априорной информации. Сущность метода заключается в представлении используемого для прогнозирования динамического ряда в качестве определенным образом ориентированного процесса случайного блуждания.
Значение изменяющегося параметра объекта прогнозирования для каждого момента на периоде основания можно представить в виде
,
где
– значение динамического ряда в
-й момент времени (год) периода основания;
– значение динамического ряда в предыдущий момент времени;
– приращение переменной объекта прогнозирования в
-й момент времени по сравнению с предыдущими;
– число значений динамического ряда.
Поскольку приращения носят случайный характер, для них можно определить вид закона распределения и его параметры. При этом нужно учесть характер зависимости последующих приращений от предыдущих.
Предполагается, что в период упреждения характер изменения динамического ряда сохраняется. Тогда, используя характеристики приращений, метод статистических испытаний можно применить для моделирования приращений в период упреждения прогноза. Значение единичной реализации прогноза на каждом последующем шаге прогнозирования будет
,
где
– номер шага на периоде упреждения;
– число шагов на периоде упреждения;
– значение переменной объекта прогнозирования на предыдущем шаге;
– моделируемое значение приращения на
-м шаге.
Производя данную процедуру до момента прогнозирования, получим значение точечного прогноза
,
где
– точечный прогноз на
-й период упреждения;
– конечное значение динамического ряда.
При разыгрывании данной процедуры многократно образуется совокупность случайных значений точечного прогноза. По полученной выборке значений
определяются среднее значение прогноза и его дисперсия:
; (4.1)
, (4.2)
где
– число реализаций точечного прогноза;
– разыгрываемое значение приращения на
-м шаге периода упреждения в
-й реализации точечного прогноза;
– значение
-й реализации точечного прогноза, определяемое по зависимости (1).
Рис. 4.1 Графическое отображение процесса случайного блуждания
Таким образом, процедура прогнозирования сводится к многократной имитации приращений на периоде упреждения и последующему определению статистических характеристик (среднего и дисперсии) реализаций точечного прогноза. График предлагаемого метода показан на рис. 4.1.
Актуально о образовании:
Исследование графо - моторных навыков у дошкольников с ОНР и
анализ полученных результатов
недоразвитие речь дошкольник письмо коррекционный Методика оценки графо-моторных функций по М.М. Безруких оказалась достаточно сложным заданием для дошкольников. Отмечались следующие ошибки учеников экспериментальной группы. При выполнении заданий 1-6 линии неровные, дрожащие, или очень слабые, или ...
Проблема формирования учебной деятельности
В современных условиях возникает необходимость рассмотреть проблему формирования учебной деятельности в единстве с проблемой индивидуальности человека, ибо, с одной стороны, учение обусловлено способностями человека к обучению, а с другой – важно предупредить отставание темпов индивидуальной социал ...
Информационное пространство и изучение истории в школе
В последние десятилетия в курсе истории, изучаемом в российской школе, произошли значительные изменения. Наиболее очевидные из них связаны с содержанием понятийного, фактического, оценочного материала. По мере отказа от господствовавших прежде в отечественной науке моноконцептуальности, системы жес ...