Применение аналитических и статистических моделей связано с априорным поиском структуры этих моделей чаще всего при ограниченной информации о характере развития процесса. Определение параметров статистической модели и оценка точности прогноза требуют к тому же наличия необходимых статистических данных, характеризующих поведение объекта на периоде основания прогноза. Указанные обстоятельства в первую очередь снижают достоверность выводов в задачах прогнозирования развития технических систем.
Для выполнения прогноза предлагается подход, не связанный с использованием жесткой структуры модели и серьезными требованиями к объему априорной информации. Сущность метода заключается в представлении используемого для прогнозирования динамического ряда в качестве определенным образом ориентированного процесса случайного блуждания.
Значение изменяющегося параметра объекта прогнозирования для каждого момента на периоде основания можно представить в виде
,
где
– значение динамического ряда в
-й момент времени (год) периода основания;
– значение динамического ряда в предыдущий момент времени;
– приращение переменной объекта прогнозирования в
-й момент времени по сравнению с предыдущими;
– число значений динамического ряда.
Поскольку приращения носят случайный характер, для них можно определить вид закона распределения и его параметры. При этом нужно учесть характер зависимости последующих приращений от предыдущих.
Предполагается, что в период упреждения характер изменения динамического ряда сохраняется. Тогда, используя характеристики приращений, метод статистических испытаний можно применить для моделирования приращений в период упреждения прогноза. Значение единичной реализации прогноза на каждом последующем шаге прогнозирования будет
,
где
– номер шага на периоде упреждения;
– число шагов на периоде упреждения;
– значение переменной объекта прогнозирования на предыдущем шаге;
– моделируемое значение приращения на
-м шаге.
Производя данную процедуру до момента прогнозирования, получим значение точечного прогноза
,
где
– точечный прогноз на
-й период упреждения;
– конечное значение динамического ряда.
При разыгрывании данной процедуры многократно образуется совокупность случайных значений точечного прогноза. По полученной выборке значений
определяются среднее значение прогноза и его дисперсия:
; (4.1)
, (4.2)
где
– число реализаций точечного прогноза;
– разыгрываемое значение приращения на
-м шаге периода упреждения в
-й реализации точечного прогноза;
– значение
-й реализации точечного прогноза, определяемое по зависимости (1).
Рис. 4.1 Графическое отображение процесса случайного блуждания
Таким образом, процедура прогнозирования сводится к многократной имитации приращений на периоде упреждения и последующему определению статистических характеристик (среднего и дисперсии) реализаций точечного прогноза. График предлагаемого метода показан на рис. 4.1.
Актуально о образовании:
Увлекательные уроки: основы создания
Л.Н. Толстой утверждал: "Никогда, никакими силами вы не заставите познавать мир через скуку". В самом деле, попытайтесь вспомнить, о чем говорилось на прошлой скучнейшей лекции по… не важно какому предмету? Удалось? Нет? И никогда не удастся. Беда школы - потеря многими учащимися интереса ...
Дробные факторные планы испытаний. Планирование
испытаний
Можно сократить число испытаний, если от ПФП перейти к дробным факторным планам, или дробным репликам от полного факторного эксперимента. При переходе от ПФП к ДФП важно сохранить ортогональность матрицы планирования. С этой целью в качестве реплики (ДФП) пользуются ПФП для меньшего числа факторов. ...
Новейшие способы привлечения учащихся в науку
В настоящее время наука не стоит на месте, она развивается. Развиваются также новые методы и способы привлечения учащихся в науку. Рассмотрим некоторые из них. А) Student-opportunities или «Студент Возможности» В рамках этой программы был представлен Студенческий конкурс плакатов. В направлении «Ас ...