Методика формирования пространственного образа на уроках геометрии

Страница 3

К таким заданиям можно отнести следующие виды задач.

а) Задачи на изображение пространственной фигуры, заданной словесным описанием.

Пример 1. В пирамиде с основанием в виде правильного треугольника одно из боковых ребер перпендикулярно плоскости основания. Что представляют собой грани такой пирамиды? Каким образом проходит высота пирамиды? Изобразите данную пирамиду?

Пример 2. В основании наклонной призмы правильный пятиугольник. Сколько граней у данной призмы? Какими геометрическими фигурами являются ее грани? Могут ли среди боковых граней быть прямоугольники? Изобразите данную призму .

б) Задачи, в которых требуется достроить фигуру или восстановить чертеж.

Пример. 1. Достройте изображение фигуры до куба:

Пример 2. Достройте изображение фигуры до треугольной пирамиды:

Пример 3. Достройте изображение фигуры до произвольного многогранника:

Пример 4. Достройте изображение многогранников по заданным вершинам:

а) треугольная пирамида:

б) треугольная призма:

в) Задачи на построение и использование разверток пространственных фигур.

Пример 1. Нарисуйте разные развертки: а) правильного тетраэдра, б) куба.

Пример 2. Дан прямоугольный параллелепипед ABCDA1B1C1D1 (AB = BC) как провести на его поверхности кратчайшую линию, соединяющую вершины В и D1 (ответ может быть получен при помощи развертки двух смежных граней)?

Пример 3. Постройте развертку наклонной треугольной призмы.

г) Задачи, в которых по наглядному изображению или словесному описанию пространственного объекта требуется построить ее проекции.

Пример 1. Какая фигура может быть проекцией: а) отрезка, б) треугольника на данную плоскость (рассмотреть различные направления проектирования)?

Пример 2. Какое наименьшее число сторон может иметь параллельная проекция на плоскость выпуклого многогранника, имеющего n граней?

Пример 3. Многогранник имеет n вершин. Показать, что существует его параллельная проекция на плоскость, имеющая: не менее четырех вершин, не более n – 1 вершины.

д) Задачи, в которых по заданной проекции пространственного объекта необходимо восстановить его наглядное изображение.

Пример. Нарисуйте многогранник, заданный проекциями на три попарно перпендикулярные плоскости:

Развитие и совершенствование умений решать геометрические задачи обуславливает графическая культура учащихся, их умения выполнять рисунки, способность и навыки к визуализации задачи. Развитию конструктивных умений и навыков активно способствует приведенная группа задач. Кроме того, все они направлены на развитие пространственных представлений и воображения. Ведь в процессе решения таких задач, прежде чем изобразить пространственный объект с помощью рисунка или чертежа, необходимо отчетливо представить его, мысленно выполнить определенные конструктивные операции с его элементами. Задачи, выполняемые без применения чертежных инструментов, развивают глазомер, точность движений, что также является характеристикой развитых пространственных представлений.

Как уже было сказано, чертеж является важнейшим средством формирования и развития пространственных представлений. При этом необходимо обращать внимание на рассмотрение различных изображений одного и того же тела. Дело в том, что, привыкая работать с шаблонными изображениями пространственных фигур, учащиеся оказываются беспомощными, когда им надо создать образ по чертежу, на котором пространственный объект расположен нетрадиционно. Выполнение таких изображений и работа с ними способствуют совершенствованию умения рассматривать объект с различных точек зрения, удерживая его образ в памяти, анализировать созданный пространственный образ, менять пространственное положение объекта.

Развитию этих умений также способствуют задачи, в которых требуется достроить пространственную фигуру или восстановить чертеж, выполняя который необходимо сначала представить пространственный объект, потом сопоставить его с данными элементами чертежа. При этом по одним и тем же элементам (отрезкам, точкам) иногда возможны различные изображения фигуры.

Большую роль для развития умений оперировать созданным пространственным образом играют задачи на построение и использование разверток пространственных фигур. В процессе построения развертки необходимо мысленно развернуть геометрическую фигуру, сопоставить полученный результат с наглядным изображением (или существующим представлением), осуществлять анализ и синтез пространственного образа, удерживая его в памяти, изменять пространственное положение и структуру образа. В результате этих действий получен новый образ – развертка.

Страницы: 1 2 3 4


Актуально о образовании:

Определение детской художественно-познавательной деятельности
Традиции изучения художественно-творческого развития детей и подростков, сложившиеся в 20-е годы XX века на основе научно-практической деятельности ученых-педагогов Г.В. Лабунской, Е.А. Флериной, В.Н. Щацкой, были продолжены наиболее влиятельным представителем этой школы, профессором Б.П. Юсовым. У ...

Упражнения, обучающие беспереводному пониманию читаемого синтетически
Устные упражнения (речевые), подготавливающие беспереводное понимание читаемого. 1. Перед чтением длинного текста учащиеся прослушивают несколько коротких рассказов. Эти рассказы по сюжету не совпадают с текстом для чтения, но они содержат тот же материал. Вот, например, один из таких рассказов, ко ...

Решение задач на совместное движение
Начиная с 5-го класса, ученики часто встречаются с этими задачами. Еще в начальной школе учащимся дается понятие «общей скорости». В результате у них формируются не совсем правильные представления о скорости сближения и скорости удаления (данной терминологии в начальной школе нет). Чаще всего, реша ...

Категории

Copyright © 2025 - All Rights Reserved - www.centraleducation.ru